Зрительный анализатор
Основные психофизические законы восприятия
Общие характеристики анализаторов человека
Нервная система обеспечивает гомеостаз и функционирует посредством следующих анализаторов:
1. экстероцептивные (воспринимает информацию извне),
1.1. зрительный,
1.2. слуховой,
1.3. осязательный (тактильный),
1.4. вкусовой,
1.5. болевой,
2. интероцептивные (воспринимает информацию изнутри).
Выделяют следующие особенности работы всех анализаторов:
1. все анализаторы специализированы (исключая болевой),
2. все анализаторы характеризуются пороговыми значениями, т. е. они обладают:
а) нижним абсолютным порогом чувствительности,
б) верхним абсолютным порогом ощущений.
Нижний порог – минимальная сила раздражителя, при которой возникают ощущения.
Верхний порог – максимальная сила раздражителя, при которой ещё возникают ощущения (болевой порог).
Дифференциальный порог () – минимальное различие интенсивностей двух однотипных раздражителей, при котором возможно распознание по разнице в ощущениях. Если <1. то два раздражителя равны.
1. Закон Вебера:
J - сила раздражителя (интенсивность и т. п.),
- минимально различимое приращение интенсивности раздражителя, отвечающее едва заметному изменению ощущений (дифф. порог).
Для зрительного анализатора:
2. Закон Вебера – Фехнера:
где k – коэффициент, характеризующий специфику каждого из анализаторов.
этот закон выполняется в средней области ощущений.
3. Закон Стивенса.
где S - ощущение.
Показатель n различен для разной модальности сигналов (для звука n=0.1, для электрического тока n=3). n зависит от вида раздражителя .
Закон Стивенса более универсальный.
В многообразной трудовой деятельности человека, в выполнении им сложных производственных процессов и точных работ зрению принадлежит первостепенное значение. Зрительный анализатор позволяет получить представление о предмете, его цвете, форме, величине, о том, находится ли предмет в движении или покое, о расстоянии его от нас, потенциальной опасности, которую он несет.
Зрительное восприятие начинается с фотохимического процесса. Под влиянием света вещества, находящиеся между наружным слоем сетчатки и сосудистой оболочкой, разлагаются, возбуждая окончания нервных элементов глаза. При этом в соответствующей зоне головного мозга возникает зрительный образ. Кора мозга синтезирует детали зрительного акта и определяет наше отношение к зрительному образу.
Несмотря на то, что зрительная информация воспринимается более чем 140 миллионами одновременно работающих палочек и колбочек и что в коре головного мозга эта информация обрабатывается 15 миллионами нейронов, все же природа открыла перед человеком только небольшое окно, через которое он смотрит на мир: глаз человека реагирует на излучение с длиною волн всего от 0,4 до 0,76 микрона. Остальной спектр волн для невооруженного глаза остается невидимым.
Глаз непосредственно реагирует на яркость, которая представляет отношение силы света (интенсивности), излучаемой данной поверхностью, к площади этой поверхности. Яркость измеряется в нитах (нт). При очень больших яркостях (более 30000 нт) возникает эффект ослепления. Гигиенически приемлема яркость до 5000 нт.
Под контрастом принимается степень воспринимаемого различия между двумя яркостями, разделенными в пространстве или времени. Контрастная чувствительность позволяет ответить на вопрос, насколько объект должен отличаться по яркости от фона, чтобы его было видно.
При оценке восприятия пространственных характеристик основным понятием является острота зрения, которая характеризуется минимальным углом, под которым две точки видны как раздельные. Острота зрения зависит от освещенности, контрастности, формы объекта и других факторов. С увеличением освещенности, острота зрения возрастает. При уменьшении контрастности острота зрения снижается. Острота зрения зависит также от места проекции изображения на сетчатке глаза. Оптический анализатор включает два типа рецепторов: колбочки и палочки. Первые являются аппаратами хроматического зрения, вторые - ахроматического. При равенстве энергии воздействующих волн различия их длин ощущается как различия в свете источников света или поверхностей предметов, которые его отражают. Глаз различает семь основных цветов и более сотни их оттенков. Цветовые ощущения вызываются воздействием световых волн, имеющих длину от 380 до 760 нм.
Зрительный анализатор обладает определенной спектральной чувствительностью, которая характеризуется относительной видимостью монохроматического излучения. Наибольшая видимость днем соответствует желтому цвету, а ночью или в сумерках - зелено-голубому. Гамма переходов от белого цвета к черному образует ахроматический ряд.
Ощущение, вызванное световым сигналом, в течение определенного времени сохраняется, несмотря на исчезновение сигнала или изменение его характеристик. Инерция зрения по данным различных исследователей находится в пределах 0,1-0,2 с. Ощущения, возникающие после снятия раздражителя, называются последовательными образами. При коротком ярком сигнале образ выступает из темноты несколько раз в быстрой последовательности. При небольших яркостях через 0,5-1,5 с появляется отрицательный последовательный образ (т. е. светлые поверхности кажутся темными и наоборот). При цветном сигнале образ окрашен в дополнительный цвет. При резком действии прерывистого раздражителя возникает ощущение мельканий, которые при определенной частоте сливаются в ровный немигающий свет. Частота, при которой мелькания исчезают, называется критической частотой слияния мельканий (КЧСМ). В том случае, когда мелькания света используются в качестве сигнала, возникает вопрос о выборе оптимальной частоты. Оптимальной является частота в пределах 3-10 Гц. Инерция зрения обусловливает стробоскопический эффект. Если время, разделяющее дискретные акты наблюдения, меньше времени гашения зрительного образа, то наблюдение субъективно ощущается как непрерывное. При стробоскопическом эффекте возможна иллюзия движения при прерывистом наблюдении отдельных объектов или иллюзия неподвижности (замедление движения), возникающая, когда движущийся предмет периодически занимает прежнее положение. При восприятии, объектов в двухмерном и трехмерном пространстве различают поле зрения и глубинное зрение. Бинокулярное поле зрения охватывает в горизонтальном направлении 120-1600, по вертикали вверх - 55-600 и вниз - 65-720. При восприятии цвета размеры поля зрения сужаются. Зона оптимальной видимости ограничена полем: вверх - 250, вниз - 350 вправо и влево по 320. Глубинное зрение связано с восприятием пространства. Ошибка оценки абсолютной удаленности на расстоянии до 30 м в среднем 12 % общего расстояния.
Естественной защитой глаз являются веки и слезная жидкость. Рефлекторно закрываясь, веки защищают сетчатку от действия сильного света, а роговицу от механических повреждений. Кроме того, при моргании наружная поверхность глаза смачивается слезной жидкостью. Это предохраняет его от высыхания и обеспечивает смывание с поверхности глаза и век инородных тел. Слезная жидкость обладает также способностью убивать микробы. Следует отметить, что передняя поверхность роговицы покрыта семью рядами покровного эпителия, которые обладают замечательной способностью быстро восстанавливаться после повреждения, например, после небольших царапин.
Однако в производственных условиях далеко не всегда можно положиться только на естественную защиту глаз. Даже легкие, но частые повреждения роговицы запыленном воздухом, раздражающими химическими веществами, мельчайшими частицами обрабатываемого материала, могут привести к потере чувствительности роговицы, к ее помутнению или образовыванию бельма. Поэтому всюду, где есть такая опасность, необходимо усиливать естественную защиту искусственными инженерно-техническими средствами.
Индивидуальные психофизиологические особенности людей, их общее и специальное развитие, а также степень тренировки мозга влияют на то, как данный человек воспринимает увиденное, в том числе и опасные элементы объекта, опасную ситуацию и визуальные сигналы, предупреждающие об опасности.
Проводя мероприятия по организации безопасного труда, следует учитывать основные, в том числе и индивидуальные, особенности зрительного восприятия. Это отклонение от нормального восприятия цвета (так называемая цветовая слепота или дальтонизм); "куриная слепота"; световая адаптация; зрительная иллюзия (обман зрения), представляющая собой неправильную оценку глазом расстояния между предметами, их размеров, а также обман зрения в отношении быстровращающихся частей машин, которые при определенных условиях кажутся неподвижными (так называемом стробоскопический эффект).
Разделы на этой странице:
5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха
Основные термины и понятия, проверяемые в экзаменационной работе: анализаторы, внутреннее ухо, евстахиева труба, зрительный анализатор, рецепторы, сетчатка, слуховой анализатор, среднее ухо.
Анализаторы – совокупность нервных образований, обеспечивающих осознание и оценку, действующих на организм, раздражителей. Анализатор состоит из воспринимающих раздражение рецепторов, проводящей части и центральной части – определенной области коры головного мозга, где формируются ощущения.
Рецепторы – чувствительные окончания, воспринимающие раздражение и преобразующие внешний сигнал в нервные импульсы. Проводниковая часть анализатора состоит из соответствующего нерва и проводящих путей. Центральная часть анализатора – один из отделов ЦНС.
Зрительный анализатор обеспечивает получение зрительной информации из окружающей среды и состоит
из трех частей: периферической – глаз, проводниковой – зрительного нерва и центральной – подкорковой и зрительной зоны коры головного мозга.
Глаз состоит из глазного яблока и вспомогательного аппарата, к которому относятся веки, ресницы, слезные железы и мышцы глазного яблока.
Глазное яблоко расположено в глазнице и имеет шаровидную форму и 3 оболочки: фиброзную. задний отдел которой образован непрозрачной белочной оболочкой (склерой ), сосудистую и сетчатую. Часть сосудистой оболочки, снабженная пигментами, называется радужной оболочкой. В центре радужной оболочки находится зрачок. который может изменять диаметр своего отверстия за счет сокращения глазных мышц. Задняя часть сетчатки воспринимает световые раздражения. Передняя ее часть – слепая и не содержит светочувствительных элементов. Светочувствительными элементами сетчатки являются палочки (обеспечивают зрение в сумерках и темноте) и колбочки (рецепторы цветового зрения, работающие при высокой освещенности). Колбочки расположены ближе к центру сетчатки (желтое пятно), а палочки концентрируются на ее периферии. Место выхода зрительного нерва называется слепым пятном .
Полость глазного яблока заполнена стекловидным телом. Хрусталик имеет форму двояковыпуклой линзы. Он способен изменять свою кривизну при сокращениях ресничной мышцы. При рассматривании близких предметов хрусталик сжимается, при рассматривании отдаленных – расширяется. Такая способность хрусталика называется аккомодацией. Между роговицей и радужкой находится передняя камера глаза, между радужкой и хрусталиком – задняя камера. Обе камеры заполнены прозрачной жидкостью. Лучи света, отражаясь от предметов, проходят через роговицу, влажные камеры, хрусталик, стекловидное тело и, благодаря преломлению в хрусталике, попадают на желтое пятно сетчатки – место наилучшего видения. При этом возникает действительное, обратное, уменьшенное изображение предмета. От сетчатки по зрительному нерву импульсы поступают в центральную часть анализатора – зрительную зону коры мозга, расположенную в затылочной доле. В коре информация, полученная от рецепторов сетчатки, перерабатывается и человек воспринимает естественное отражение объекта.
Нормальное зрительное восприятие обусловлено:
– достаточным световым потоком;
– фокусированием изображения на сетчатке (фокусирование перед сетчаткой означает близорукость, а за сетчаткой – дальнозоркость);
– осуществлением аккомодационного рефлекса.
Важнейшим показателем зрения является его острота, т. е. предельная способность глаза различать мелкие объекты.
Орган слуха и равновесия. Слуховой анализатор обеспечивает восприятие звуковой информации и ее обработку в центральных отделах коры головного мозга. Периферическую часть анализатора образуют: внутренне ухо и слуховой нерв. Центральная часть образована подкорковыми центрами среднего и промежуточного мозга и височной зоной коры.
Ухо – парный орган, состоящий из наружного, среднего и внутреннего уха
Наружное ухо включает ушную раковину, наружный слуховой проход и барабанную перепонку.
Среднее ухо состоит из барабанной полости, цепочки слуховых косточек и слуховой (евстахиевой) трубы. Слуховая труба связывает барабанную полость с полостью носоглотки. Это обеспечивает выравнивание давления по обеим сторонам барабанной перепонки. Слуховые косточки – молоточек, наковальня и стремечко связывают барабанную перепонку с перепонкой овального окна, ведущего в улитку. Среднее ухо обеспечивает передачу звуковых волн из среды с низкой плотностью (воздух) в среду с высокой плотностью (эндолимфу), в которой находятся рецепторные клетки внутреннего уха. Внутреннее ухо расположено в толще височной кости и состоит из костного и расположенного в нем перепончатого лабиринта. Пространство между ними заполнено перилимфой, а полость перепончатого лабиринта – эндолимфой. В костном лабиринте различают три отдела – преддверие, улитку и полукружные каналы. К органу слуха относится улитка – спиральный канал в 2,5 оборота. Полость улитки разделена перепончатой основной мембраной, состоящей из волоконец разной длины. На основной мембране находятся рецепторные волосковые клетки. Колебания барабанной перепонки передаются слуховым косточкам. Они усиливают эти колебания почти в 50 раз и через овальное окошко передаются в жидкость улитки, где воспринимаются волоконцами основной мембраны. Рецепторные клетки улитки воспринимают раздражение, поступающее от волоконец и по слуховому нерву передают его в височную зону коры головного мозга. Ухо человека воспринимает звуки частотой от 16 до 20 000 Гц.
Орган равновесия . или вестибулярный аппарат . образован двумя мешочками. заполненными жидкостью, и тремя полукружными каналами. Рецепторные волосковые клетки расположены на дне и внутренней стороне мешочков. К ним примыкает мембрана с кристаллами – отолитами, содержащими ионы кальция. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. В основаниях каналов находятся волосковые клетки. Рецепторы отолитового аппарата реагируют на ускорение или замедление прямолинейного движения. Рецепторы полукружных каналов раздражаются при изменениях вращательных движений. Импульсы от вестибулярного аппарата по вестибулярному нерву поступают в ЦНС. Сюда же поступают импульсы от рецепторов мышц, сухожилий, подошв. Функционально вестибулярный аппарат связан с мозжечком, отвечающим за координацию движений, ориентацию человека в пространстве.
Вкусовой анализатор состоит из рецепторов, расположенных во вкусовых почках языка, нерва, проводящего импульс в центральный отдел анализатора, который находится на внутренних поверхностях височной и лобной долей.
Обонятельный анализатор представлен обонятельными рецепторами, находящимися в слизистой оболочке носа. По обонятельному нерву сигнал от рецепторов поступает в обонятельную зону коры головного мозга, находящуюся рядом со вкусовой зоной.
Кожный анализатор состоит из рецепторов, воспринимающих давление, боль, температуру, прикосновение, проводящих путей и зоны кожной чувствительности, расположенной в задней центральной извилине.
ПРИМЕРЫ ЗАДАНИЙ
А1. Анализатор
1) воспринимает и перерабатывает информацию
2) проводит сигнал от рецептора в кору полушарий
3) только воспринимает информацию
4) только передает информацию по рефлекторной дуге
А3. Размеры и форма предмета анализируются в
1) височной доле мозга 3) затылочной доле мозга
2) лобной доле мозга 4) теменной доле мозга
А4. Высота звука распознается в
1) височной доле коры 3) затылочной доле
3) жидкость улитки
4) комплект слуховых косточек
А8. При возникновении изображения перед сетчаткой возникает
1) куриная слепота 3) близорукость
2) дальнозоркость 4) дальтонизм
А9. Деятельность вестибулярного аппарата регулируется
1) вегетативной нервной системой
Лекция 5. Анализаторы
Анализаторы – это нейро-сенсорные органы, которые способны регистрировать импульсы в центральной части анализатора. Впервые понятие анализаторов ввел Семенов и он выделил в анализаторах 3 составляющие их структуры:
проводящая часть (слуховой нерв, зрительный)
центральная часть, которая представлена определенной зоной коры больших полушарий.
У человека выделяют зрительный и слуховой анализаторы, кроме того, вестибулярный, обонятельный и тактильный анализаторы.
Зрительный анализатор.
Это нейро-сенсорный орган, который способен регистрировать электромагнитные лучи видимой части спектра. Лучи, находящиеся ниже зоны восприятия называются инфракрасными, выше – УФ.
Рецепторной частью анализатора является рецепторы сетчатки, т. к. палочки и колбочки. Проводящей частью – зрительные нервы, которые образуют хиазму на уровне среднего мозга. Центральной частью являются воспринимающие области коры больших полушарий (затылочные доли).
Орган зрения.
Для человека характерен парный орган зрения – глаза, которые залегают в глазнице. К стенкам глазницы глаза присоединятся за счет 3 пар глазо-двигательных мышц. Глаза находятся под защитой бровей, ресниц, век. В верхней части глазницы над глазом находится слезная железа. Её секрет – слезы – смачивают поверхность глаза, препятствуют ее пересыханию, а также содержат бактерицидные вещества, например, лизоцин, который препятствует развитию на слизистой бактерий. Частично слезы попадают через проток в носовую полость.
Глаз окружен оболочками, причем самая наружная оболочка глаза – белочная оболочка, или склера, на передней стороне переходит в более толстую и прозрачную роговицу. Кроме того склера соединяется со слизистой выстилкой века, формируя конъюнктиву, которая удерживает глаз в глазнице, и, кроме того, защищает роговицу от внешних воздействий.
Более внутренняя оболочка глаза – это сосудистая оболочка, которая содержит капилляры кровеносной системы, т. к. они отсутствуют в самой сетчатке, т. е. основная функция сосудистой оболочки – трофическая.
Самая внутренняя часть сосудистой оболочки – это пигментный слой, где располагаются пигменты: фусцин и меланин. В пигментный слой погружены наружные членики рецепторов палочек и колбочек, поэтому основная функция пигментного слоя заключается в удержании лучей и в возбуждении рецепторов. На передней стороне глаза сосудистая оболочка и пигментный слой переходят в радужную оболочку, причем эта оболочка прерывиста и перерыв в ней называется зрачком.
Диафрагма зрачка может постоянно меняться в зависимости от освещения. Диафрагма зрачка изменяется в зависимости от сокращения кольцевых и радиальных мускульных волокон, которые иннервируются парасимпатической системой.
Самая внутренняя оболочка глаза – сетчатка – содержит рецепторы: палочки и колбочки. Концентрация рецепторов не одинакова в различных частях глаза: палочки преобладают на периферии глаза, колбочки – в центре глаза, в особенности в районе, так называемой, центральной ямки. Здесь образуется желтое пятно, т. е. максимальная концентрация колбочек, и здесь наиболее хорошо воспринимаются цвета. Рецепторы оплетены нейронами, аксоны которых, собираясь вместе, формируют зрительный нерв. Место выхода зрительного нерва называется слепым пятном.
К светопреломляющим оптическим структурам глаза относят:
водянистая влага, заполняющая камеры глаза
стекловидное тело,
причем сила преломления измеряется в диоптриях.
На сетчатке каждого глаза за счет преломляющей силы сред, в первую очередь хрусталика, строится действительное, обратное и уменьшенное изображение. Человек видит в прямом виде благодаря ежедневной тренировке зрительного анализатора и показателей с других анализаторов.
Оптическая установка глаза на объект, который перемещается относительный глаз, называется аккомодацией, причем лучи, отраженные от объекта в норме, должны сходиться в точку фокуса на сетчатку. Аккомодация достигается при помощи изменения преломляющей силы хрусталика. Например, если предмет находится близко от глаз, ресничная мышца сокращается, цинновые связки расслабляются, хрусталик принимает форму цилиндра, его преломляющая сила максимальна и лучи сходятся в точку фокуса на сетчатке. Если предмет находится далеко от сетчатки, ресничная мышца расслабляется, цинновые связки натягиваются, хрусталик принимает плоскую форму, его преломляющая сила минимальна, и лучи сходятся в точку фокуса на сетчатку. Считается, что ближайшая точка ясного видения находится на таком минимальном расстоянии от глаз, когда 2 ближайшие точки объекта хорошо различимы.
Дальняя рамка ясного видения залегает в бесконечности, однако заметная аккомодация наблюдается, только когда расстояние до объекта не превышает 60 метров. Очень хорошая аккомодация наблюдается, когда расстояние до объекта становится 20 метров.
Патологии аккомодации.
В норме лучи сходятся в точку фокуса на сетчатке глаза.
Близорукость – миопия – в этом случае лучи сходятся в точку фокуса до сетчатки.
Причины миопии:
Дальнозоркость – в этом случае параллельный пучок света собирается в точку фокуса за сетчаткой.
длина глаза меньше нормы на 2-3 мм
неэластичность связок, которая наблюдается с возрастом, поэтому после 40 развивается возрастная дальнозоркость.
Помогают двояковыпуклые стекла.
Астигматизм – в этом случае кривизна роговицы повышена, и лучи вообще не сходятся в точку фокуса. Помогают цилиндрические стекла.
Сетчатка глаза.
Сетчатка глаза представляет собой совокупность рецепторов (палочек и колбочек), т. е. является периферической частью зрительного анализатора.
Строение сетчатки напоминаем строение 3хнейронной сети. Наружной частью рецепторов погружены в пигментный слой; здесь, в пигментном слое, находятся пигменты, которые удерживают световые лучи. Рецепторы связаны со слоем биполярных нейронов, причем каждый такой нейрон связан только с одним рецептором. Биполярные нейроны связаны с мультиполярным, причем аксоны мультиполярных нейронов, объединяясь, образуют зрительный нерв. А одним мультиполярный нейрон может быть связан сразу с несколькими биполярными. Между мультиполярными нейронами находится звездчатая клетка, которая соединяет в единую сеть все рецептивные поля.
Глаз человека из всех наземных животных инвертирован. Это значит, что луч сета попадает в начале на стекловидное тело, затем на слои нейронов, и только затем на рецепторы. Таким образом, до сетчатки доходит рассеянный свет и рецепторы не поражаются. У многих морских животных глаз не инвертирован, т. е. рассеянный свет попадает прямо на рецепторы. Палочки и колбочки содержат пигменты, которые распадаются под воздействием света. В палочках содержится пигмент родопсин, в колбочках – йодапсин.
Родопсин способен распадаться на пигмент ретинен и белок опсин под действием даже небольшого количества света. Поэтому палочки обеспечивают зрение в сумерках.
Йодапсинов 3 вида и он распадается под действием интенсивного освещения, поэтому йодапсины воспринимают цвет, а за счет 3 видов этого пигмента воспринимаются все цвета видимой части спектра.
Фотохимическая реакция распада родопсина вызывает деполяризацию мембраны палочки, и эта волна деполяризации охватывает сначала биполярные нейроны, а затем мультиполярные. При дальнейшем действии света пигмент ретин превращается в витамин А. Обратный синтез родопсина происходит как на свету, так и в темноте, однако в темноте идет быстрее, поэтому при длительном пребывании на ярком свету, либо при воздействии света, отраженного от снега, или нехватке витамина А наблюдается болезнь гемералопия, или куриная слепота.
Патологии колбочек связаны с патологиями цветовосприятия, т. к. колбочки отвечают за восприятие цвета, оттенков и насыщенности:
частичная потеря цветоощущения
дальтонизм ( человек не различает определенные цвета спектра: красный=зеленый, желтый=синий)
полная потеря цветоощущения (ахроматическое зрение)
Для человека характерно зрение двумя глазами, или бинокулярное зрение. Оно позволяет правильно оценить расстояние до предмета, оценить фактуру, объем, рельефность, причем лучи, отраженные от одной точки предмета, способны фокусироваться в одном месте на сетчатках обоих глаз (идентичная фиксация), либо в разных местах (неидентичная фиксация).
Благодаря неидентичной фиксации человек воспринимает рельефность и объем. Импульсы по зрительным нервам направлены в центры в затылочных долях, где и формируется общая картинка.
Слуховой анализатор.
Второй ведущий анализатор у человека. Это нейро-сенсорный орган, который воспринимает звуковые колебания в определенном диапазоне от 16 тыс. до 22 тыс. кГц. Область ниже восприятия – инфразвук, выше восприятия – ультразвук.
Слуховой анализатор состоит и 3 частей:
рецепторная часть. Представлена механо-рецепторами внутреннего уха, которые формируют кортив орган
слуховые нервы, которые образуют хиазму на уровне моста
центральная часть, которая включает определенные центры в височных долях коры.
Орган слуха.
Для человека характерен парный орган слуха, который включает наружное ухо, среднее ухо и внутреннее ухо.
Наружное ухо представлено ушной раковиной и слуховым проходом. Раковина осуществляет направленный прием звука. Слуховой проход 2,5 см покрыт ресничным эпителием. В эпителиальных клетках вырабатывается секрет, особенно в маленьких одноклеточных железках, которые синтезируют ушную серу. Она выполняет функцию защиты, т. к. на ней оседают пыль, и, кроме того, сера содержит бактерицидные вещества, которые убивают бактерии. Кроме того, воздух в ушном проходе согревается и увлажняется. Ушной проход заканчивается барабанной перепонкой, которая имеет волокнистую структуру. Звуковые волны ударяют в барабанную перепонку и волокна перепонки начинают колебаться, что приводит к колебанию косточек среднего уха.
Среднее ухо представляет собой полость, заполненную воздухом, причем для выравнивания давления между средним ухом и носоглоткой возникает связь в виде Евстахиевой трубы. В среднем ухе располагаются косточки: молоточек, наковальня и стремечко. Молоточек своей рукояткой связан с барабанной перепонкой, он контактирует с наковальней, а наковальня со стремечком, причем площадь контакта поверхности от барабанной перепонки к стремечку, которое располагается на овальном окне, уменьшается, и это дает возможность усиливать слабые звуки и ослаблять сильные. Таким образом, среднее ухо принимает участие в передачи колебаний от барабанной перепонки к внутреннему уху.
Внутреннее ухо представляет собой костный лабиринт в виде улитки, которая закручена 2,5 оборота в височной кости. С полостью среднего уха костный лабиринт сообщается при помощи овального и круглого окна, которые затянуты мембранными перепонками, причем на мембране овального окна располагается косточка стремечко. Внутри костного лабиринта проходит перепончатый лабиринт, представленный 2 мембранами: базальная мембрана и рейснерова мембрана. На вершине улитки мембраны соединяются, но в целом эти мембраны делят улитку на 3 канала, или лестницы. Вск каналы внутреннего уха заполнены жидкостью, причем улитковый канал заполнен эндолимфой, а барабанный и преддверья заполнены перелимфой. Эти жидкости несколько различны по составу.
Звуковая волна приводит к колебаниям косточек среднего уха. Наблюдаются колебания мембраны овального окна, и эти колебания передаются на жидкость внутреннего уха, и они гасятся на мембране круглого окна, причем круглое окно выступает в роли резонатора. Колебания передаются на базальную мембрану и эндолимфу, и регистрируются находящимися здесь кортиевым органом. Кортиев орган – это рецепторная часть анализатора, который представлен волосковидными клетками и эти клетки располагаются на основной мембране в несколько рядов. Эти клетки закрыты покровной мембраной, которая одним концом присоединяется к базальной мембране в основании улитки, а второй конец её свободен.
Колебания жидкости приводят к колебанию основной мембраны и к тому, что покровная мембрана кортиевого органа начинает раздражать волоски механо-рецепторов. Мембрана рецепторов деполяризуется, и волна деполяризации идет по слуховому нерву.
Волокна основной мембраны имеют разную толщину и могут колебаться с разной амплитудой, что обеспечивает дифференцировку высоких и низких звуков.
Считается, что в основании улитки воспринимаются высокие звуки, на вершине улитки – низкие звуки. Существует несколько гипотез восприятия и частотного анализа звука:
- гипотеза резонанса. Считается, что в основании улитки базальная мембрана приходит в резонанс со звуковой волной и покровная мембрана раздражает небольшую группу волосковидных клеток.
- гипотеза залпов. Считается, что на вершине улитки покровная мембрана раздражает целые рецептивные поля и в ЦНС отправляется целый залп импульсов. Считается, что таким образом воспринимаются низкие звуки.
Вестибулярный аппарат.
Вестибулярный анализатор.
Это нейро-сенсорный орган, который регистрирует изменения положения тела либо частей тела, относительно друг друга. Вестибулярный анализатор состоит из 3 частей:
механо-рецепторы вестибулярного аппарата
вестибулярная ветвь слухового нерва
центральная часть в височной кости
Вестибулярный аппарат (в. а) залегает в височной кости и связан с костным лабиринтом внутреннего уха, хотя в. а. и улитка внутреннего уха имеют абсолютно различное происхождение.
В. а. представлен костным лабиринтом, заполненным жидкостью, внутри которого проходит перепончатый лабиринт, также заполненный жидкостью. Перепончатый лабиринт формирует органы преддверья, который представлены круглым и овальным мешочками и 3 полуокружными каналами, причем каждый канал связан и с круглым, ис овальным мешочком. На одном из концов канала находится расширение, или ампула.
Органы преддверья выстланы эпителием и заполнены жидкостью. Среди клеток эпителия располагаются группами волосковидные клетки. Сверху над клетками находится студенистая мембрана, в которую погружены волоски клеток. В мембране находятся кристаллы Ca 2+. называемые отолитами, или статоцистами. При перемещении тела, либо головы овальный и круглый мешочки начинают смещаться друг относительно друга, начинают смещаться отолиты, которые тянут за собой студенистую мембрану и она раздражает волосковидные клетки.
Органы преддверья воспринимают начало и конец прямолинейного движения. прямолинейное ускорение, силу тяжести. Полуокружные каналы воспринимают вращательные движения и угловое ускорение, они заполнены жидкостью, причем волосковидные клетки находятся только в ампулах. При изменении положения тела жидкость, заполняющая ампулы, отстает от стенок ампулы и раздражает волоски.
Вкусовой анализатор.
Вкусовые рецепторы располагаются во вкусовых сосочках, которые формируются на языке и на слизистой рта. Импульсы от рецепторов идут в теменные доли коры больших полушарий. Считается, что кончик языка воспринимает сладкий вкус, у корня языка – горький вкус, по бокам – кислый и соленый.
Обонятельный анализатор.
Это единственный анализатор, который не имеет представительства в коре. Рецепторы располагаются в носовой полости и способны воспринимать летучие соединения. Эти импульсы анализируются на уровне древней коры, а также за счет лимбической системы мозга.
Осязательный анализатор.
Рецепторная часть этого анализатора относится к коже, где располагаются рецепторы боли, тепла, холода – тактильные рецепторы. Эти рецепторы могут быть представлены свободными нервными окончаниями, например, рецепторы боли, а также инкапсулированными нервными окончаниями, например, рецепторы давления. Чувствительные нервы этого анализатора формируют перекрест на уровне варолиевого моста, а центральная часть анализатора находится в теменных долях коры.
«Человек среда»
2.2 Анализаторы человека
А. Тактильный анализатор (осязание) [1, 4, 6, 10]. На коже человека имеется около 500 тысяч неравномерно расположенных точек – тактильных анализаторов, которые реагируют на механические раздражители (прикосновение, давление). Абсолютный порог тактильной чувствительности определяется по минимальному давлению предмета на кожную поверхность, при котором начинается ощущение. На различных частях тела эти пороги различны: минимальный порог ощущения для кончиков пальцев кистей рук – 3 мг/мм 2 ; для тыльной стороны кисти – 12 мг/мм 2 ; а для кожи пятки – 250 мг/мм 2 [6].
Информация от всех этих тактильных рецепторов собирается в спинной мозг и по проводящим путям белого вещества поступает в ядра таламуса, а оттуда в высший центр тактильной чувствительности – область задней центральной извилины коры больших полушарий.
Временной порог тактильной чувствительности менее 0,1 с. Характерная особенность тактильных анализаторов – быстрое развитие адаптации, т. е. исчезновение чувства прикосновения при давлении. Время начала привыкания (адаптации) от 2 до 20 с.
Б. Болевой анализатор. Боль – сигнал тревоги для организма. На 1 кв. см кожи имеется не менее 100 болевых точек – оголенных окончаний нервов. Организм реагирует на боль рефлекторным движением. Между тактильными и болевыми рецепторами имеется противоречие: наименьшая плотность болевых рецепторов приходится на те участки кожи, которые богаты тактильными рецепторами. Это связано с различием функционального назначения рецепторов: болевые играют оборонительную и информационную роль, а тактильные – ориентировочную.
Биологический смысл боли заключается в том, что она, являясь сигналом опасности, мобилизует организм на борьбу за его самосохранение. Под влиянием боли перестраивается работа всех систем и повышается реактивность организма. Но боль, выполняя полезную функцию, может сама по себе стать опасной. При болевом шоке может возникнуть гибель организма.
Пороги болевой чувствительности:
кожа живота – 20 мг/мм 2 ;
кончики пальцев – 300 мг/мм 2 .
Критическая частота слияния болевых раздражителей 3 Гц. Предполагается, что психофизический закон Вебера-Фехнера для этого анализатора не действует.
В. Температурные анализаторы [1, 6, 10]. Температурная чувствительность свойственна организмам, обладающим постоянной температурой тела, обеспечиваемой терморегуляцией. Температура кожи человека ниже температуры тела и различна на разных участках: на лбу – 34 – 35°С; на лице – 20 – 25°С; на животе 34°С; на стопах ног – 24 –27°С. Средняя температура раздетого человека – 30 – 32°С.
В коже человека обнаружено два вида тепловых рецепторов: одни реагируют только на тепло, другие – на холод. Всего на коже насчитывают около 30 тыс. тепловых точек и 250 тыс. холодовых. Абсолютный порог температурной чувствительности для тепловых точек – 0,2°С, для холодовых – 0,4°С. Порог различительной чувствительности около 1°С. Температурные анализаторы защищают организм от перегревания и переохлаждения.
Г. Вибрационный анализатор . Вибрация высокой интенсивности может привести к серьезным нарушениям деятельности всех систем человека и даже к тяжелому заболеванию. При небольших значениях интенсивности и длительности вибрация может быть полезна: снимает усталость, повышает обмен веществ, увеличивает мышечную силу (действие вибромассажера). Специальных анализаторов, воспринимающих вибрацию, пока ученые не обнаружили. Наиболее чувствительны к вибрации дистальные участки тела (наиболее удаленные от медиальной плоскости, например, кисти рук).
Диапазон ощущений вибрации колеблется от 1 до 10 000 Гц.
Д. Вкусовой анализатор. В физиологии существует четырехкомпонентная теория вкусовых ощущений: сладкое, горькое, кислое и соленое. Все остальные вкусы – их комбинации. Вкус воспринимается вкусовыми луковицами – микроскопическими образованиями в слизистой языка. Таких луковиц во рту несколько тысяч. Каждая луковица имеет 10–15 вкусовых клеток с ворсинками. Каждая луковица различает чаще всего один вкус. Разные участки языка имеют разную чувствительность к вкусовым веществам: кончик языка более чувствителен к сладкому, корень языка – к горькому, края языка – к кислому.
Е. Обонятельный анализатор. Запах может служить сигналом, предупреждающим об опасности. Для распознавания опасных для здоровья газов, не имеющих своего запаха, к ним для обеспечения безопасности добавляют одоранты. Приборов для определения запаха, лучших носа живого организма, пока нет. Обоняние у человека развито очень сильно, но у многих животных оно намного лучше. Слоны, например, улавливают запахи слонихи на расстоянии до 5 км.
Обонятельные клетки (их около 60 миллионов) располагаются в слизистой носа на площади около 5 см 2. Клетки покрыты огромным количеством волосков длиной 30–40 ангстрем. Площадь их соприкосновения с пахнущими веществами составляет 5–7 м 2. Если на анализаторы попадает опасное для здоровья вещество, то рефлекторно замедляется или прекращается дыхание (хлороформ, нашатырный спирт). Запахи способны вызвать отвращение к пище или другие отрицательные реакции (тошнота, обморок). Некоторые запахи изменяют (усиливают) зрительную функцию (толуол), слуховое восприятие (бензол) или повышает чувствительность одних рецепторов, снижая при этом других (камфара, например, усиливает чувствительность зрительных анализаторов к зеленому спектру и снижает к красному).
Абсолютный порог обоняния у человека измеряется долями миллиграмма вещества на литр воздуха, но общепризнанной классификации обонятельных ощущений нет.
Ж. Слуховой анализатор [1, 4, 6, 10]. Звуковые сигналы доставляют для человека значительную часть информации. Звуки воспринимаются ушами. Человеческое ухо – поразительно чувствительный орган. Оно выполняет две функции: восприятие звуков и сохранение равновесия тела. Ухо способно воспринимать перепад давления, какое происходит при подъеме на высоту в 8 мм. Человеческому уху доступны механические колебания с частотой от 16 до 20 000 Гц.
По своему строению ухо делится на три части: внутреннее, среднее и наружное.
Наружное ухо состоит из ушной раковины и слухового прохода (длиной, примерно, 2,7 см). Ушная раковина служит для улавливания звука и определения направления звука. Слуховой проход наглухо закрыт барабанной перепонкой толщиной 0,1 мм. Под влиянием звукового давления перепонка колеблется.
Среднее ухо заполнено воздухом. В нем имеются три маленькие косточки: молоточек, наковаленка и стремечко.
За средним расположено внутреннее ухо. заполненное специальной жидкостью. В нем находятся два органа: орган слуха и вестибулярный аппарат. В органе слуха находятся около 23 000 клеток – анализаторов, в которых звуковые волны превращаются в нервные импульсы.
Основными параметрами звуковых волн являются уровень интенсивности звуковой волны и частота , которые субъективно человеком воспринимаются как громкость и высота звука. Величина порога слышимости зависит от частоты звука. Предельным значением слухового рецептора является порог болевой чувствительности (130–140) дБ. Соотношение уровня интенсивности и частоты определяет уровень громкости звука.
З. Зрительный анализатор. Зрение – сложный биологический процесс, с помощью которого человек получает 90% информации об окружающем его мире, познает форму, цвет, величину предметов, направление и расстояние до них. Орган зрения – глаз – обладает высокой чувствительностью. Сетчатка глаза содержит множество отдельных светочувствительных элементов, которые воспринимают излучения с длиной волны от 380 (фиолетовый) до 760 (красный) нанометров. Остальной спектр человек без дополнительных приспособлений не видит.
Глаз реагирует на яркость . которая представляет собой отношение силы света (интенсивности), излучаемой поверхностью, к площади этой поверхности. Яркость выражается в нитах (нт). При больших яркостях возникает эффект ослепления (более 30 000 нт). Гигиенически приемлемая яркость до 5 000 нт. Например, яркость ночного безлунного неба равна 110 –4 нт; яркость спирали лампы накаливания – 510 6 нт; солнца – 510 9 нт.
Под контрастом понимается степень воспринимательного отличия двух яркостей, разделенных в пространстве или времени (различение двух отдельных предметов, отличие предмета от фона).
Острота зрения характеризует минимальный угол, под которым две точки видны как раздельные. Две точки объекта, расположенные настолько близко друг к другу, что их изображения на сетчатке глаза попадают в один и тот же светочувствительный элемент, расположенный на сетчатке глаза, воспринимаются глазом как одна точка. Минимальный угол зрения, при котором две черные точки на белом фоне на расстоянии 10 метров различаются как отдельные, называется остротой зрения. Обычно острота зрения лежит в диапазоне от 1 до 10 минут. 1 минута – это угол, под которым виден отрезок в 1 см на расстоянии 34 метра от глаза [1]. Острота зрения у одного и того же человека зависит от освещенности, контрастности, формы и размеров объекта и др.
Ощущение, вызванное световым сигналом, в течение некоторого времени сохраняется, несмотря на исчезновение сигнала. Инерция зрения составляет 0,1 – 0,3 с. Если сигнал был большой интенсивности, то возникает послеобраз в дополнительном цвете (темные предметы кажутся светлыми, а светлые – темными). При резком интенсивном сигнале послеобраз чаще возникает желтого или красного цвета. При воздействии прерывистых раздражителей (мельканий) возможно появление стробоскопического эффекта . Если время, разделяющее дискретные акты наблюдения, меньше времени гашения зрительного образа, то прерывистое наблюдение субъективно ощущается как непрерывное. При этом эффекте возможна иллюзия неподвижности движущихся предметов, что может стать причиной травм и аварий. Негативное действие стробоскопического эффекта увеличилось с появлением газоразрядных ламп. Колебания электрического напряжения в сети создают в таких лампах колебания светового потока. Если частота вращения некоторого объекта совпадет с частотой колебания светового поля, может создаться эффект остановки объекта.
При восприятии объектов в двумерном и трехмерном пространствах различают поле бинокулярного зрения и глубинное зрение. Поле бинокулярного зрения охватывает в горизонтальном направлении 120 – 160°, в вертикальном вверх – 55 – 60°; вниз – 65 – 72°. Ошибка оценки расстояния до 30 метров составляет 12 %.
И. Цветовой анализатор. Оптический анализатор глаза включает два вида рецепторов: палочки (130 млн.) и колбочки (7 млн.). Колбочки – рецепторы хроматического (цветного) зрения, они обеспечивают «дневное» зрение. Палочки – рецепторы ахроматического зрения, осуществляют «ночное» видение. Благодаря палочкам человек видит ночью, но зрение его бесцветное. Днем главный орган – колбочки и зрение человека цветное. У голубей и кур нет палочек, только колбочки – они ночью не видят. Отклонения бывают и у человека: дальтонизм, цветовая слепота, куриная слепота. При цветовой слепоте все цвета воспринимаются как серые. Дальтоники не различают красный и зеленый цвета: они для них кажутся серыми. Дальтониками являются около 5% всех мужчин и только 0,5% женщин.
Любой цвет человек воспринимает как комбинацию трех основных цветов: красного, синего и зеленого. Наиболее чувствительна сетчатка глаза к зеленому цвету. Это самый полезный успокаивающий цвет.
К. Органический анализатор. Мозг человека получает информацию не только от внешней среды, но и от самого организма. Чувствительные аппараты имеются практически во всех внутренних органах, они вырабатывают сигналы, которые являются необходимым условием для регуляции деятельности внутренних органов. Пороги их изучены недостаточно. Нервная система поддерживает состояние всех органов в относительном постоянстве – в гомеостазе.
В вопросах защиты от опасности имеет значение время реакции организма на различные раздражители. Для разных людей и разных анализаторов это время различно. Среднее время реакции на раздражение разных групп анализаторов приведено в табл. 2.1.
Таблица 2.1 – Среднее время реакции человека на раздражитель